首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
力学   1篇
数学   1篇
  2016年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 4 毫秒
1
1.
图的边韧性度   总被引:1,自引:0,他引:1  
文[1]中,定义图G(V,E)的边韧性度定义为min{(|S|+T(G-S))/(ω(G-S)):S?E(G)},这里,T-(G-S)和ω(G-S)分别表示G-S中最大分支的顶点数和连通分支数.这是一个能衡量网络图稳定性较好的参数,因为它不仅考虑到了图G-S的分支数也考虑到了它的阶数.在以前的工作中,作者得到了边韧性度图的一个充要条件.利用这些结果证明了K-树是严格边韧性度图,并找到了边韧性度与较高阶的边坚韧度和边坚韧度之间的关系.  相似文献   
2.
In this paper, we propose a measurement technique based on local strain measurements to perform real-time reconstruction of the overall structural deformation and the distributed stress field produced by the impact of a body on a water free surface. In particular, we seek establishing a measurement chain capable of acquiring and elaborating the signals at high frequency, so that it can be utilized to study rapidly varying strain fields, such as those occurring in impulsive events. Fiber Bragg gratings are utilized to sense the local structural deformation. Experiments are conducted on flexible plastic wedges with variable deadrise angles impacting on a quiescent fluid surface. The experimental tests are performed in free fall and we explore variations of the entry velocity by varying the drop height. The structural deformation is reconstructed from point-wise strain measurements utilizing a modal reconstruction methodology. The impact dynamics are analysed through accelerometers and linear position sensors. Results show that the impact behaviour of the flexible body is characterized by a main overall deformation where the structure is distorted in the direction of the loading, whereby marked vibrations, whose amplitude increase with the entry velocity, dominate the dynamic response. The influence of the mode shapes considered in the present analysis on the accuracy of the results is also observed. The proposed methodology allows for a fairly high acquisition frequency, which translates into a real-time structural reconstruction technique. Results show that the proposed methodology can be a valuable tool for the live monitoring of structures undergoing impact events.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号